2021 ISSN Caffeine Position Stand: vol. 1 & 2- Animated Video Research Review
ISSN Position Stand:
Adapted from:
Nanci S. Guest, Trisha A. VanDusseldorp, Michael T. Nelson, Jozo Grgic, Brad J. Schoenfeld, Nathaniel D. M. Jenkins, Shawn M. Arent, Jose Antonio, Jeffrey R. Stout, Eric T. Trexler, Abbie E. Smith-Ryan, Erica R. Goldstein, Douglas S. Kalman & Bill I. Campbell
International Society of Sports Nutrition position stand: Caffeine and Exercise Performance. J Int Soc Sports Nutr 18, 1 (2021). https://doi.org/10.1186/s12970-020-00383-4
Click here to read the full study
PART 1:
Download Vol 1:
PART 2:
Download Vol. 2
References
1.
Bailey RL, Saldanha LG, Dwyer JT. Estimating caffeine intake from energy drinks and dietary supplements in the United States. Nutr Rev. 2014;72(Suppl 1):9–13..
PubMed PubMed Central Article Google Scholar
2.
Fulgoni VL 3rd, Keast DR, Lieberman HR. Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am J Clin Nutr. 2015;101(5):1081–7.
CAS PubMed Article Google Scholar
3.
Rybak ME, Sternberg MR, Pao CI, Ahluwalia N, Pfeiffer CM. Urine excretion of caffeine and select caffeine metabolites is common in the U.S. population and associated with caffeine intake. J Nutr. 2015;145(4):766–74.
CAS PubMed PubMed Central Article Google Scholar
4.
US Department of Agriculture ARS. What we eat in America, data tables, 2009–2010. Washington (DC): US Department of Agriculture; 2012.
5.
Wickham KA, Spriet LL. Administration of caffeine in alternate forms. Sports Med. 2018;48(Suppl 1):79–91.
PubMed PubMed Central Article Google Scholar
6.
Doepker C, Lieberman HR, Smith AP, Peck JD, El-Sohemy A, Welsh BT. Caffeine: friend or foe? Annu Rev Food Sci Technol. 2016;7:117–37.
CAS PubMed Article Google Scholar
7.
Wikoff D, Welsh BT, Henderson R, Brorby GP, Britt J, Myers E, et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem Toxicol. 2017;109(Pt 1):585–648.
CAS PubMed Article Google Scholar
8.
Jiang W, Wu Y, Jiang X. Coffee and caffeine intake and breast cancer risk: an updated dose-response meta-analysis of 37 published studies. Gynecol Oncol. 2013;129(3):620–9.
CAS PubMed Article Google Scholar
9.
Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr. 2014;53(1):25–38.
CAS PubMed Article Google Scholar
10.
Caldeira D, Martins C, Alves LB, Pereira H, Ferreira JJ, Costa J. Caffeine does not increase the risk of atrial fibrillation: a systematic review and meta-analysis of observational studies. Heart. 2013;99(19):1383–9.
11.
Higgins S, Straight CR, Lewis RD. The effects of preexercise caffeinated coffee ingestion on endurance performance: an evidence-based review. Int J Sport Nutr Exerc Metab. 2016;26(3):221–39.
CAS PubMed Article Google Scholar
12.
Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15(2):69–78.
CAS PubMed Article Google Scholar
13.
Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res. 2009;23(1):315–24.
14.
Asmussen E, Boje O. The effect of alcohol and some drugs on the capacity for work. Acta Physiol Scand. 1948;15(2):109–13.
CAS PubMed Article Google Scholar
15.
Ljungqvist A. Brief history of anti-doping. Med Sport Sci. 2017;62:1–10.
16.
Rivers WH, Webber HN. The action of caffeine on the capacity for muscular work. J Physiol. 1907;36(1):33–47.
CAS PubMed PubMed Central Article Google Scholar
17.
Haldi J, Wynn W. Action of drugs on efficiency of swimmers. Restor Q. 1946;17:96–101.
18.
Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports. 1978;10(3):155–8.
19.
Ivy JL, Costill DL, Fink WJ, Lower RW. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports. 1979;11(1):6–11.
CAS PubMed Article Google Scholar
20.
Perkins R, Williams MH. Effect of caffeine upon maximal muscular endurance of females. Med Sci Sports. 1975;7(3):221–4.
21.
Durrant KL. Known and hidden sources of caffeine in drug, food, and natural products. J Am Pharm Assoc (Wash). 2002;42(4):625–37.
22.
Mitchell DC, Knight CA, Hockenberry J, Teplansky R, Hartman TJ. Beverage caffeine intakes in the U.S. Food Chem Toxicol. 2014;63:136–42.
CAS PubMed Article Google Scholar
23.
Ramarethinam S, Rajalakshmi N. Caffeine in tea plants [Camellia sinensis (L) O. Kuntze]: in situ lowering by Bacillus licheniformis (Weigmann) Chester. Indian J Exp Biol. 2004;42(6):575–80.
24.
Ashihara H, Suzuki T. Distribution and biosynthesis of caffeine in plants. Front Biosci. 2004;9:1864–76.
CAS PubMed Article Google Scholar
25.
Misako K, Kouichi M. Caffeine synthase and related methyltransferases in plants. Front Biosci. 2004;9:1833–42.
26.
Mazzafera P. Catabolism of caffeine in plants and microorganisms. Front Biosci. 2004;9:1348–59.
CAS PubMed Article Google Scholar
27.
Al-Shaar L, Vercammen K, Lu C, Richardson S, Tamez M, Mattei J. Health effects and public health concerns of energy drink consumption in the United States: a mini-review. Front Public Health. 2017;5:225.
PubMed PubMed Central Article Google Scholar
28.
Utter J, Denny S, Teevale T, Sheridan J. Energy drink consumption among New Zealand adolescents: associations with mental health, health risk behaviours and body size. J Paediatr Child Health. 2017;54(3):279–83.
29.
Marmorstein NR. Interactions between energy drink consumption and sleep problems: associations with alcohol use among young adolescents. J Caffeine Res. 2017;7(3):111–6.
CAS PubMed PubMed Central Article Google Scholar
30.
De Sanctis V, Soliman N, Soliman AT, Elsedfy H, Di Maio S, El Kholy M, et al. Caffeinated energy drink consumption among adolescents and potential health consequences associated with their use: a significant public health hazard. Acta Biomed. 2017;88(2):222–31.
PubMed PubMed Central Google Scholar
31.
Arria AM, Caldeira KM, Bugbee BA, Vincent KB, O'Grady KE. Trajectories of energy drink consumption and subsequent drug use during young adulthood. Drug Alcohol Depend. 2017;179:424–32.
PubMed PubMed Central Article Google Scholar
32.
Trexler ET, Smith-Ryan AE. Creatine and caffeine: considerations for concurrent supplementation. Int J Sport Nutr Exerc Metab. 2015;25(6):607–23.
33.
Kendall KL, Moon JR, Fairman CM, Spradley BD, Tai CY, Falcone PH, et al. Ingesting a preworkout supplement containing caffeine, creatine, beta-alanine, amino acids, and B vitamins for 28 days is both safe and efficacious in recreationally active men. Nutr Res. 2014;34(5):442–9.
CAS PubMed Article Google Scholar
34.
Smith AE, Fukuda DH, Kendall KL, Stout JR. The effects of a pre-workout supplement containing caffeine, creatine, and amino acids during three weeks of high-intensity exercise on aerobic and anaerobic performance. J Int Soc Sports Nutr. 2010;7:10.
PubMed PubMed Central Article CAS Google Scholar
35.
Tarnopolsky MA. Caffeine and creatine use in sport. Ann Nutr Metab. 2010;57(Suppl 2):1–8.
CAS PubMed Article Google Scholar
36.
Fukuda DH, Smith AE, Kendall KL, Stout JR. The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans. Nutr Res. 2010;30(9):607–14.
CAS PubMed Article Google Scholar
37.
Cameron M, Camic CL, Doberstein S, Erickson JL, Jagim AR. The acute effects of a multi-ingredient pre-workout supplement on resting energy expenditure and exercise performance in recreationally active females. J Int Soc Sports Nutr. 2018;15:1.
PubMed PubMed Central Article Google Scholar
38.
Bergstrom HC, Byrd MT, Wallace BJ, Clasey JL. Examination of a multi-ingredient pre-workout supplement on total volume of resistance exercise andsubsequent strength and power performance. J Strength Cond Res. 2018;32(6):1479–90.
39.
Tinsley GM, Hamm MA, Hurtado AK, Cross AG, Pineda JG, Martin AY, et al. Effects of two pre-workout supplements on concentric and eccentric force production during lower body resistance exercise in males and females: a counterbalanced, double-blind, placebo-controlled trial. J Int Soc Sports Nutr. 2017;14:46.
PubMed PubMed Central Article CAS Google Scholar
40.
Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5.
PubMed PubMed Central Article CAS Google Scholar
41.
Pasman WJ, van Baak MA, Jeukendrup AE, de Haan A. The effect of different dosages of caffeine on endurance performance time. Int J Sports Med. 1995;16(4):225–30.
CAS PubMed Article Google Scholar
42.
Lieberman HR, Tharion WJ, Shukitt-Hale B, Speckman KL, Tulley R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Sea-Air-Land. Psychopharmacology. 2002;164(3):250–61.
CAS PubMed Article Google Scholar
43.
Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol (1985). 1995;78(3):867–74.
44.
Graham TE, Spriet LL. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol (1985). 1991;71(6):2292–8.
45.
Spriet LL, MacLean DA, Dyck DJ, Hultman E, Cederblad G, Graham TE. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Phys. 1992;262(6 Pt 1):E891–8.
46.
McNaughton LR, Lovell RJ, Siegler J, Midgley AW, Moore L, Bentley DJ. The effects of caffeine ingestion on time trial cycling performance. Int J Sports Physiol Perform. 2008;3(2):157–63.
CAS PubMed Article Google Scholar
47.
Hodgson AB, Randell RK, Jeukendrup AE. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS One. 2013;8(4):e59561.
CAS PubMed PubMed Central Article Google Scholar
48.
McLellan TM, Bell DG. The impact of prior coffee consumption on the subsequent ergogenic effect of anhydrous caffeine. Int J Sport Nutr Exerc Metab. 2004;14(6):698–708.
49.
Graham TE, Hibbert E, Sathasivam P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J Appl Physiol. 1998;85(3):883–9.
CAS PubMed Article Google Scholar
50.
Lamina S, Musa DI. Ergogenic effect of varied doses of coffee-caffeine on maximal aerobic power of young African subjects. Afr Health Sci. 2009;9(4):270–4.
PubMed PubMed Central Google Scholar
51.
Trice I, Haymes EM. Effects of caffeine ingestion on exercise-induced changes during high-intensity, intermittent exercise. Int J Sport Nutr. 1995;5(1):37–44.
CAS PubMed Article Google Scholar
52.
Wiles JD, Bird SR, Hopkins J, Riley M. Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running. Br J Sports Med. 1992;26(2):116–20.
CAS PubMed PubMed Central Article Google Scholar
53.
Rodrigues LO, Russo AK, Silva AC, Picarro IC, Silva FR, Zogaib PS, et al. Effects of caffeine on the rate of perceived exertion. Braz J Med Biol Res. 1990;23(10):965–8.
54.
Butts NK, Crowell D. Effect of caffeine ingestion on cardiorespiratory endurance in men and women. Res Q Exerc Sport. 1985;56(5):301–5.
55.
Richardson DL, Clarke ND. Effect of coffee and caffeine ingestion on resistance exercise performance. J Strength Cond Res. 2016;30(10):2892–900.
56.
Trexler ET, Smith-Ryan AE, Roelofs EJ, Hirsch KR, Mock MG. Effects of coffee and caffeine anhydrous on strength and sprint performance. Eur J Sport Sci. 2016;16(6):702–10.
57.
Sellami M, Slimeni O, Pokrywka A, Kuvacic G, L DH, Milic M, et al. Herbal medicine for sports: a review. J Int Soc Sports Nutr. 2018;15:14.
PubMed PubMed Central Article CAS Google Scholar
58.
Kamimori GH, Karyekar CS, Otterstetter R, Cox DS, Balkin TJ, Belenky GL, et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm. 2002;234(1–2):159–67.
CAS PubMed Article Google Scholar
59.
Ryan EJ, Kim CH, Muller MD, Bellar DM, Barkley JE, Bliss MV, et al. Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. J Strength Cond Res. 2012;26(3):844–50.
60.
Ryan EJ, Kim CH, Fickes EJ, Williamson M, Muller MD, Barkley JE, et al. Caffeine gum and cycling performance: a timing study. J Strength Cond Res. 2013;27(1):259–64.
61.
Lane SC, Hawley JA, Desbrow B, Jones AM, Blackwell JR, Ross ML, et al. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab. 2014;39(9):1050–7.
CAS PubMed Article Google Scholar
62.
Oberlin-Brown KT, Siegel R, Kilding AE, Laursen PB. Oral presence of carbohydrate and caffeine in chewing gum: independent and combined effects on endurance cycling performance. Int J Sports Physiol Perform. 2016;11(2):164–71.
63.
Paton C, Costa V, Guglielmo L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J Sports Sci. 2015;33(10):1076–83.
64.
Paton CD, Lowe T, Irvine A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur J Appl Physiol. 2010;110(6):1243–50.
CAS PubMed Article Google Scholar
65.
Bellar DM, Kamimori G, Judge L, Barkley JE, Ryan EJ, Muller M, et al. Effects of low-dose caffeine supplementation on early morning performance in the standing shot put throw. Eur J Sport Sci. 2012;12(1):57–61.
66.
Ranchordas MK, Pratt H, Parsons M, et al. Effect of caffeinated gum on a battery of rugby-specific tests in trained university-standard male rugby union players. J Int Soc Sports Nutr. 2019;16(17). https://doi.org/10.1186/s12970-019-0286-7.
67.
Venier S, Grgic J, Mikulic P. Caffeinated gel ingestion enhances jump performance, muscle strength, and power in trained men. Nutrients. 2019;11(4).
68.
Venier S, Grgic J, Mikulic P. Acute enhancement of jump performance, muscle strength, and power in resistance-trained men after consumption of caffeinated chewing gum. Int J Sports Physiol Perform. 2019:1–7. https://doi.org/10.1123/ijspp.2019-0098.
69.
Doering TM, Fell JW, Leveritt MD, Desbrow B, Shing CM. The effect of a caffeinated mouth-rinse on endurance cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2014;24(1):90–7.
70.
De Pauw K, Roelands B, Knaepen K, Polfliet M, Stiens J, Meeusen R. Effects of caffeine and maltodextrin mouth rinsing on P300, brain imaging, and cognitive performance. J Appl Physiol. 2015;118(6):776–82.
PubMed Article CAS Google Scholar
71.
Pomportes L, Brisswalter J, Casini L, Hays A, Davranche K. Cognitive performance enhancement induced by caffeine, carbohydrate and guarana mouth rinsing during submaximal exercise. Nutrients. 2017;9(6).
72.
Beaven CM, Maulder P, Pooley A, Kilduff L, Cook C. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Appl Physiol Nutr Metab. 2013;38(6):633–7.
CAS PubMed Article Google Scholar
73.
Kizzi J, Sum A, Houston FE, Hayes LD. Influence of a caffeine mouth rinse on sprint cycling following glycogen depletion. Eur J Sport Sci. 2016;16(8):1087–94.
74.
Bottoms L, Hurst H, Scriven A, Lynch F, Bolton J, Vercoe L, Shone Z, Barry G, Sinclair J. The effect of caffeine mouth rinse on self-paced cyclingperformance. Com Ex Phys. 2014;10(4):239–45.
75.
Pataky MW, Womack CJ, Saunders MJ, Goffe JL, D'Lugos AC, El-Sohemy A, et al. Caffeine and 3-km cycling performance: effects of mouth rinsing, genotype, and time of day. Scand J Med Sci Sports. 2016;26(6):613–9.
CAS PubMed Article Google Scholar
76.
Lesniak A, Davis SE, Moir GL, et al. The effects of carbohydrate, caffeine and combined rinses on cycling performance. J Sport Human Perform. 2016;4:1–10.
77.
Dolan P, Witherbee KE, Peterson KM, Kerksick CM. Effect of carbohydrate, caffeine, and carbohydrate + caffeine mouth rinsing on intermittent running performance in collegiate male lacrosse athletes. J Strength Cond Res. 2017;31(9):2473–9.
78.
Clarke ND, Kornilios E, Richardson DL. Carbohydrate and caffeine mouth rinses do not affect maximum strength and muscular endurance performance. J Strength Cond Res. 2015;29(10):2926–31.
79.
De Pauw K, Roelands B, Van Cutsem J, Marusic U, Torbeyns T, Meeusen R. Electro-physiological changes in the brain induced by caffeine or glucose nasal spray. Psychopharmacology. 2017;234(1):53–62.
PubMed Article CAS Google Scholar
80.
De Pauw K, Roelands B, Van Cutsem J, Decroix L, Valente A, Taehee K, et al. Do glucose and caffeine nasal sprays influence exercise or cognitive performance? Int J Sports Physiol Perform. 2017;12(9):1186–91.
81.
Laizure SC, Meibohm B, Nelson K, Chen F, Hu ZY, Parker RB. Comparison of caffeine disposition following administration by oral solution (energy drink) and inspired powder (AeroShot) in human subjects. Br J Clin Pharmacol. 2017;83(12):2687–94.
CAS PubMed PubMed Central Article Google Scholar
82.
Hogervorst E, Bandelow S, Schmitt J, Jentjens R, Oliveira M, Allgrove J, et al. Caffeine improves physical and cognitive performance during exhaustive exercise. Med Sci Sports Exerc. 2008;40(10):1841–51.
CAS PubMed Article Google Scholar
83.
Cooper R, Naclerio F, Allgrove J, Larumbe-Zabala E. Effects of a carbohydrate and caffeine gel on intermittent sprint performance in recreationally trained males. Eur J Sport Sci. 2014;14(4):353–61.
84.
Scott AT, O'Leary T, Walker S, Owen R. Improvement of 2000-m rowing performance with caffeinated carbohydrate-gel ingestion. Int J Sports Physiol Perform. 2015;10(4):464–8.
85.
Alford C, Cox H, Wescott R. The effects of red bull energy drink on human performance and mood. Amino Acids. 2001;21(2):139–50.
CAS PubMed Article Google Scholar
86.
Candow DG, Kleisinger AK, Grenier S, Dorsch KD. Effect of sugar-free Red Bull energy drink on high-intensity run time-to-exhaustion in young adults. J Strength Cond Res. 2009;23(4):1271–5.
87.
Walsh AL, Gonzalez AM, Ratamess NA, Kang J, Hoffman JR. Improved time to exhaustion following ingestion of the energy drink amino impact. J IntSoc Sports Nutr. 2010;7:14.
88.
Ivy JL, Kammer L, Ding Z, Wang B, Bernard JR, Liao YH, Hwang J. Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int J Sport Nutr Exerc Metab. 2009;19(1):61–78.
CAS PubMed Article Google Scholar
89.
Sanders GJ, Peveler W, Holmer B, Peacock CA. The effect of three different energy drinks on oxygen consumption and perceived exertion during treadmillexercise. J Int Soc Sports Nutr. 2015;12(1):1–1.
90.
Al-Fares MN, Alsunni AA, Majeed F, Badar A. Effect of energy drink intake before exercise on indices of physical performance in untrained females. Saudi Med J. 2015;36(5):580.
PubMed PubMed Central Article Google Scholar
91.
Prins PJ, Goss FL, Nagle EF, Beals K, Robertson RJ, Lovalekar MT, et al. Energy drinks improve five-kilometer running performance in recreational endurance runners. J Strength Cond Res. 2016;30(11):2979–90.
92.
Kinsinger K, Oglesby B, Ojiambo R, Johann JM, Liguori G. Effects of 5-Hour ENERGY® Shot on Oxygen Consumption, Heart Rate, and SubstrateUtilization During Submaximal and Maximal Exercise. Int J Exerc Sci. 2016;9(5):15.
93.
Forbes SC, Candow DG, Little JP, Magnus C, Chilibeck PD. Effect of Red Bull energy drink on repeated Wingate cycle performance and bench-press muscle endurance. Int J Sport Nutr Exerc Metab. 2007;17(5):433–44.
CAS PubMed Article Google Scholar
94.
Del Coso J, Munoz-Fernandez VE, Munoz G, Fernandez-Elias VE, Ortega JF, Hamouti N, et al. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS One. 2012;7(2):e31380.
PubMed PubMed Central Article CAS Google Scholar
95.
Gonzalez AM, Walsh AL, Ratamess NA, Kang J, Hoffman JR. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise. J Sports Sci Med. 2011;10(2):261–6.
PubMed PubMed Central Google Scholar
96.
Astorino TACT, Lozano AT, Aburto-Pratt K, Duhon J. Ergogenic effects of caffeine on simulated time-trial performance are independent of fitness level. J Caffeine Res. 2011;1:179–85.
97.
Campbell BI, Richmond JL, Dawes JJ. The effects of a commercial, pre-exercise energy drink supplement on power, muscular endurance, and repeated sprint speed. Int J Exerc Sci. 2016;9(2):9.
98.
Eckerson JM, Bull AJ, Baechle TR, Fischer CA, O'Brien DC, Moore GA, et al. Acute ingestion of sugar-free red bull energy drink has no effect on upper body strength and muscular endurance in resistance trained men. J Strength Cond Res. 2013;27(8):2248–54.
99.
Astley C, Souza DB, Polito MD. Acute Specific Effects of Caffeine-containing Energy Drink on Different Physical Performances in Resistance-trained Men. Int J Exerc Sci. 2018;11(4):260.
PubMed PubMed Central Google Scholar
100.
Magrini MA, Colquhoun RJ, Dawes JJ, Smith DB. Effects of a pre-workout energy drink supplement on upper body muscular endurance performance. Int J Exerc Sci. 2016;9(5):667.
PubMed PubMed Central Google Scholar
101.
Campbell BI, Kilpatrick M, Wilborn C, La Bounty P, Parker B, Gomez B, Elkins A, Williams S, dos Santos MG. A commercially available energy drinkdoes not improve peak power production on multiple 20-second Wingate tests. J Int Soc Sports Nutr. 2010;7(1):1–2.
102.
Hoffman JR, Kang J, Ratamess NA, Hoffman MW, Tranchina CP, Faigenbaum AD. Examination of a pre-exercise, high energy supplement on exercise performance. J Int Soc Sports Nutr. 2009;6(1):2.
PubMed PubMed Central Article Google Scholar
103.
Seidl R, Peyrl A, Nicham R, Hauser E. A taurine and caffeine-containing drink stimulates cognitive performance and well-being. Amino Acids. 2000.
104.
Scholey AB, Kennedy DO. Cognitive and physiological effects of an “energy drink”: an evaluation of the whole drink and of glucose, caffeine and herbal flavouring fractions. Psychopharmacology. 2004;176(3–4):320–30.
CAS PubMed Article Google Scholar
105.
Smit HJ, Cotton JR, Hughes SC, Rogers PJ. Mood and cognitive performance effects of “energy” drink constituents: caffeine, glucose and carbonation. Nutr Neurosci. 2004;7(3):127–39.
106.
Rao A, Hu H, Nobre AC. The effects of combined caffeine and glucose drinks on attention in the human brain. Nutr Neurosci. 2005;8(3):141–53.
CAS PubMed Article Google Scholar
107.
Howard MA, Marczinski CA. Acute effects of a glucose energy drink on behavioral control. Exp Clin Psychopharmacol. 2010;18(6):553.
CAS PubMed Article Google Scholar
108.
Wesnes KA, Brooker H, Watson AW, Bal W, Okello E. Effects of the Red Bull energy drink on cognitive function and mood in healthy young volunteers. J Psychopharmacol. 2017;31(2):21.
109.
Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Int J Sport Nutr Exerc Metab. 2018;28(2):104–25.
CAS PubMed Article Google Scholar
110.
Van Thuyne W, Delbeke FT. Distribution of caffeine levels in urine in different sports in relation to doping control before and after the removal of caffeine from the WADA doping list. Int J Sports Med. 2006;27(9):745–50.
PubMed Article CAS PubMed Central Google Scholar
111.
Delbeke FT, Debackere M. Caffeine: use and abuse in sports. Int J Sports Med. 1984;5:179–82.
CAS PubMed Article PubMed Central Google Scholar
112.
Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(Suppl 2):S175–84.
PubMed Article PubMed Central Google Scholar
113.
Spriet LL. Caffeine and performance. Int J Sport Nutr. 1995;5(Suppl):S84–99.
PubMed Article PubMed Central Google Scholar
114.
Association TNCA. 2018-19 NCAA banned drugs list. https://www.ncaa.org/sites/default/files/2018-19NCAA_Banned_Drugs_20180608.pdf.
115.
Del Coso J, Munoz G, Munoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metab. 2011;36(4):555–61.
PubMed Article PubMed Central Google Scholar
116.
Aguilar-Navarro M, Munoz G, Salinero JJ, Munoz-Guerra J, Fernandez-Alvarez M, Plata MDM, et al. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. 2019;11(2).
117.
Chvasta TE, Cooke AR. Emptying and absorption of caffeine from the human stomach. Gastroenterology. 1971;61(6):838–43.
CAS PubMed Article PubMed Central Google Scholar
118.
Callahan MM, Robertson RS, Arnaud MJ, Branfman AR, McComish MF, Yesair DW. Human metabolism of [1-methyl-14C]- and [2-14C] caffeine after oral administration. Drug Metab Dispos. 1982;10(4):417–23.
CAS PubMed PubMed Central Google Scholar
119.
Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39(2):127–53.
CAS PubMed Article PubMed Central Google Scholar
120.
Blanchard J, Sawers SJ. The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol. 1983;24(1):93–8.
CAS PubMed Article Google Scholar
121.
White JR Jr, Padowski JM, Zhong Y, Chen G, Luo S, Lazarus P, et al. Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot versus chilled energy drink in healthy young adults. Clin Toxicol (Phila). 2016;54(4):308–12.
122.
Mumford GK, Benowitz NL, Evans SM, Kaminski BJ, Preston KL, Sannerud CA, et al. Absorption rate of methylxanthines following capsules, cola and chocolate. Eur J Clin Pharmacol. 1996;51(3–4):319–25.
CAS PubMed Article Google Scholar
123.
Arnaud MJ. Metabolism of caffeine and other components of coffee. Caffeine, Coffee, and Health. ed. New York: Raven Press; 1993.
124.
Tang-Liu DD, Williams RL, Riegelman S. Disposition of caffeine and its metabolites in man. J Pharmacol Exp Ther. 1983;224(1):180–5.
125.
Rasmussen BB, Brix TH, Kyvik KO, Brosen K. The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics. 2002;12(6):473–8.
CAS PubMed Article Google Scholar
126.
Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics. 2004;14(1):1–18.
CAS PubMed Article PubMed Central Google Scholar
127.
Begas E, Kouvaras E, Tsakalof A, Papakosta S, Asprodini EK. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Biomed Chromatogr. 2007;21(2):190–200.
CAS PubMed Article Google Scholar
128.
Lelo A, Miners JO, Robson RA, Birkett DJ. Quantitative assessment of caffeine partial clearances in man. Br J Clin Pharmacol. 1986;22(2):183–6.
CAS PubMed PubMed Central Article Google Scholar
129.
Thorn CF, Aklillu E, McDonagh EM, Klein TE, Altman RB. PharmGKB summary: caffeine pathway. Pharmacogenet Genomics. 2012;22(5):389–95.
CAS PubMed PubMed Central Google Scholar
130.
Mandel HG. Update on caffeine consumption, disposition and action. Food Chem Toxicol. 2002;40(9):1231–4.
CAS PubMed Article PubMed Central Google Scholar
131.
Djordjevic N, Ghotbi R, Jankovic S, Aklillu E. Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 -163C>A polymorphism. Eur J Clin Pharmacol. 2010;66(7):697–703.
CAS PubMed Article PubMed Central Google Scholar
132.
Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007;63(6):537–46.
CAS PubMed Article PubMed Central Google Scholar
133.
Perera V, Gross AS, McLachlan AJ. Influence of environmental and genetic factors on CYP1A2 activity in individuals of South Asian and European ancestry. Clin Pharmacol Ther. 2012;92(4):511–9.
CAS PubMed PubMed Central Google Scholar
134.
Djordjevic N, Ghotbi R, Bertilsson L, Jankovic S, Aklillu E. Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur J Clin Pharmacol. 2008;64(4):381–5.
CAS PubMed Article PubMed Central Google Scholar
135.
Marks V, Kelly JF. Absorption of caffeine from tea, coffee, and coca cola. Lancet. 1973;1(7807):827.
CAS PubMed Article PubMed Central Google Scholar
136.
Liguori A, Hughes JR, Grass JA. Absorption and subjective effects of caffeine from coffee, cola and capsules. Pharmacol Biochem Behav. 1997;58(3):721–6.
CAS PubMed Article PubMed Central Google Scholar
137.
Shargel LYA. Applied biopharmaceutics and pharmacokinetics. 4th ed. Stamford: Appleton and Lange; 1999.
138.
Rousseau E, Ladine J, Liu QY, Meissner G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys. 1988;267(1):75–86.
CAS PubMed Article PubMed Central Google Scholar
139.
Tarnopolsky M, Cupido C. Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J Appl Physiol (1985). 2000;89(5):1719–24.
140.
Kalmar JM, Cafarelli E. Caffeine: a valuable tool to study central fatigue in humans? Exerc Sport Sci Rev. 2004;32(4):143–7.
PubMed Article PubMed Central Google Scholar
141.
Meeusen R, Roelands B, Spriet LL. Caffeine, exercise and the brain. Nestle Nutr Inst Workshop Ser. 2013;76:1–12.
PubMed Article PubMed Central Google Scholar
142.
Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev. 1992;17(2):139–70.
CAS PubMed Article PubMed Central Google Scholar
143.
Chesley A, Howlett RA, Heigenhauser GJ, Hultman E, Spriet LL. Regulation of muscle glycogenolytic flux during intense aerobic exercise after caffeine ingestion. Am J Phys. 1998;275(2 Pt 2):R596–603.
144.
Graham TE, Helge JW, MacLean DA, Kiens B, Richter EA. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol. 2000;529(Pt 3):837–47.
CAS PubMed PubMed Central Article Google Scholar
145.
Graham TE, Battram DS, Dela F, El-Sohemy A, Thong FS. Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Appl Physiol Nutr Metab. 2008;33(6):1311–8.
CAS PubMed Article PubMed Central Google Scholar
146.
Tarnopolsky MA, Atkinson SA, MacDougall JD, Sale DG, Sutton JR. Physiological responses to caffeine during endurance running in habitual caffeine users. Med Sci Sports Exerc. 1989;21(4):418–24.
CAS PubMed Article PubMed Central Google Scholar
147.
Casal DC, Leon AS. Failure of caffeine to affect substrate utilization during prolonged running. Med Sci Sports Exerc. 1985;17(1):174–9.
CAS PubMed Article PubMed Central Google Scholar
148.
Glaister M, Gissane C. Caffeine and physiological responses to submaximal exercise: a meta-analysis. Int J Sports Physiol Perform. 2018;13(4):402–11.
PubMed Article PubMed Central Google Scholar
149.
Talanian JL, Spriet LL. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl Physiol Nutr Metab. 2016;41(8):850–5.
CAS PubMed Article PubMed Central Google Scholar
150.
Cureton KJ, Warren GL, Millard-Stafford ML, Wingo JE, Trilk J, Buyckx M. Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab. 2007;17(1):35–55.
CAS PubMed Article PubMed Central Google Scholar
151.
Black CD, Waddell DE, Gonglach AR. Caffeine's ergogenic effects on cycling: neuromuscular and perceptual factors. Med Sci Sports Exerc. 2015;47(6):1145–58.
CAS PubMed Article PubMed Central Google Scholar
152.
Killen LG, Green JM, O'Neal EK, McIntosh JR, Hornsby J, Coates TE. Effects of caffeine on session ratings of perceived exertion. Eur J Appl Physiol. 2013;113(3):721–7.
CAS PubMed Article PubMed Central Google Scholar
153.
Demura S, Yamada T, Terasawa N. Effect of coffee ingestion on physiological responses and ratings of perceived exertion during submaximal endurance exercise. Percept Mot Skills. 2007;105(3 Pt 2):1109–16.
PubMed Article PubMed Central Google Scholar
154.
Hadjicharalambous M, Georgiades E, Kilduff LP, Turner AP, Tsofliou F, Pitsiladis YP. Influence of caffeine on perception of effort, metabolism and exercise performance following a high-fat meal. J Sports Sci. 2006;24(8):875–87.
CAS PubMed Article PubMed Central Google Scholar
155.
Motl RW, O'Connor PJ, Tubandt L, Puetz T, Ely MR. Effect of caffeine on leg muscle pain during cycling exercise among females. Med Sci Sports Exerc. 2006;38(3):598–604.
CAS PubMed Article PubMed Central Google Scholar
156.
Motl RW, O'Connor PJ, Dishman RK. Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. J Pain. 2003;4(6):316–21.
CAS PubMed Article PubMed Central Google Scholar
157.
Gliottoni RC, Meyers JR, Arngrimsson SA, Broglio SP, Motl RW. Effect of caffeine on quadriceps muscle pain during acute cycling exercise in low versus high caffeine consumers. Int J Sport Nutr Exerc Metab. 2009;19(2):150–61.
CAS PubMed Article PubMed Central Google Scholar
158.
Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42(7):1375–87.
CAS PubMed Article PubMed Central Google Scholar
159.
Allen DG, Lamb GD, Westerblad H. Impaired calcium release during fatigue. J Appl Physiol (1985). 2008;104(1):296–305.
160.
Lindinger MI, Graham TE, Spriet LL. Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol (1985). 1993;74(3):1149–55.
161.
Gonglach AR, Ade CJ, Bemben MG, Larson RD, Black CD. Muscle pain as a regulator of cycling intensity: effect of caffeine ingestion. Med Sci Sports Exerc. 2016;48(2):287–96.
CAS PubMed Article PubMed Central Google Scholar
162.
Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, et al. Nomenclature and classification of purinoceptors. Pharmacol Rev. 1994;46(2):143–56.
CAS PubMed PubMed Central Google Scholar
163.
Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83–133.
CAS PubMed PubMed Central Google Scholar
164.
Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270.
CAS PubMed Article PubMed Central Google Scholar
165.
Fredholm BB. Astra award lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol. 1995;76(2):93–101.
CAS PubMed Article PubMed Central Google Scholar
166.
Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Central fatigue: the serotonin hypothesis and beyond. Sports Med. 2006;36(10):881–909.
PubMed Article PubMed Central Google Scholar
167.
Nehlig A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev. 2018;70(2):384–411.
CAS PubMed Article PubMed Central Google Scholar
168.
Salamone JD, Farrar AM, Font L, Patel V, Schlar DE, Nunes EJ, et al. Differential actions of adenosine A1 and A2A antagonists on the effort-related effects of dopamine D2 antagonism. Behav Brain Res. 2009;201(1):216–22.
CAS PubMed PubMed Central Article Google Scholar
169.
Salamone JD, Correa M, Ferrigno S, Yang JH, Rotolo RA, Presby RE. The psychopharmacology of effort-related decision making: dopamine, adenosine, and insights into the neurochemistry of motivation. Pharmacol Rev. 2018;70(4):747–62.
CAS PubMed PubMed Central Article Google Scholar
170.
Mingote S, Font L, Farrar AM, Vontell R, Worden LT, Stopper CM, et al. Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway. J Neurosci. 2008;28(36):9037–46.
CAS PubMed PubMed Central Article Google Scholar
171.
Worden LT, Shahriari M, Farrar AM, Sink KS, Hockemeyer J, Muller CE, et al. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology. 2009;203(3):489–99.
CAS PubMed Article PubMed Central Google Scholar
172.
Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdere P, Caccia S, et al. 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology. 2002;26(3):311–24.
CAS PubMed Article PubMed Central Google Scholar
173.
Lucas G, De Deurwaerdere P, Caccia S, Umberto S. The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT(2A) and 5-HT(2C) receptor subtypes and significance of the haloperidol dose used. Neuropharmacology. 2000;39(6):1053–63.
CAS PubMed Article PubMed Central Google Scholar
174.
Di Giovanni G, Di Matteo V, Pierucci M, Esposito E. Serotonin-dopamine interaction: electrophysiological evidence. Prog Brain Res. 2008;172:45–71.
PubMed Article CAS PubMed Central Google Scholar
175.
Volkow ND, Wang GJ, Logan J, Alexoff D, Fowler JS, Thanos PK, et al. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl Psychiatry. 2015;5:e549.
CAS PubMed PubMed Central Article Google Scholar
176.
Zhang G, Stackman RW Jr. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 2015;6:225.
PubMed PubMed Central Google Scholar
177.
Abdolmaleky HM, Faraone SV, Glatt SJ, Tsuang MT. Meta-analysis of association between the T102C polymorphism of the 5HT2a receptor gene and schizophrenia. Schizophr Res. 2004;67(1):53–62.
178.
Yamada S, Akita H, Kanazawa K, Ishida T, Hirata K, Ito K, et al. T102C polymorphism of the serotonin (5-HT) 2A receptor gene in patients with non-fatal acute myocardial infarction. Atherosclerosis. 2000;150(1):143–8.
CAS PubMed Article Google Scholar
179.
Farina D, Arendt-Nielsen L, Merletti R, Graven-Nielsen T. Effect of experimental muscle pain on motor unit firing rate and conduction velocity. J Neurophysiol. 2004;91(3):1250–9.
180.
Farina D, Arendt-Nielsen L, Graven-Nielsen T. Experimental muscle pain reduces initial motor unit discharge rates during sustained submaximal contractions. J Appl Physiol (1985). 2005;98(3):999–1005.
181.
Graven-Nielsen T, Lund H, Arendt-Nielsen L, Danneskiold-Samsoe B, Bliddal H. Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve. 2002;26(5):708–12.
182.
Martikainen IK, Nuechterlein EB, Pecina M, Love TM, Cummiford CM, Green CR, et al. Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J Neurosci. 2015;35(27):9957–65.
CAS PubMed PubMed Central Article Google Scholar
183.
Duncan MJ, Oxford SW. Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure. J Sports Med Phys Fitness. 2012;52(3):280–5.
184.
Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13(4):392–9.
185.
Astorino TA, Cottrell T, Talhami Lozano A, Aburto-Pratt K, Duhon J. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiol Behav. 2012;106(2):211–7.
CAS PubMed Article Google Scholar
186.
Maridakis V, O'Connor PJ, Dudley GA, McCully KK. Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. J Pain. 2007;8(3):237–43.
CAS PubMed Article Google Scholar
187.
Astorino TA, Roupoli LR, Valdivieso BR. Caffeine does not alter RPE or pain perception during intense exercise in active women. Appetite. 2012;59(2):585–90.
CAS PubMed Article Google Scholar
188.
Green JM, Olenick A, Eastep C, Winchester L. Caffeine influences cadence at lower but not higher intensity RPE-regulated cycling. Physiol Behav. 2017;169:46–51.
CAS PubMed Article Google Scholar
189.
Asmussen E. Muscle fatigue. Med Sci Sports. 1979;11(4):313–21.
190.
Maclaren DP, Gibson H, Parry-Billings M, Edwards RH. A review of metabolic and physiological factors in fatigue. Exerc Sport Sci Rev. 1989;17:29–66.
191.
Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Phys Regul Integr Comp Phys. 2003;284(2):R399–404.
192.
Childs E, de Wit H. Enhanced mood and psychomotor performance by a caffeine-containing energy capsule in fatigued individuals. Exp Clin Psychopharmacol. 2008;16(1):13–21.
CAS PubMed Article Google Scholar
193.
Lorist MM, Snel J, Kok A, Mulder G. Influence of caffeine on selective attention in well-rested and fatigued subjects. Psychophysiology. 1994;31(6):525–34.
CAS PubMed Article Google Scholar
194.
Vital-Lopez FG, Ramakrishnan S, Doty TJ, Balkin TJ, Reifman J. Caffeine dosing strategies to optimize alertness during sleep loss. J Sleep Res. 2018;27(5):e12711.
195.
Shen JG, Brooks MB, Cincotta J, Manjourides JD. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: a systematic review and meta-analysis. J Sci Med Sport. 2018.
196.
Cox GR, Desbrow B, Montgomery PG, Anderson ME, Bruce CR, Macrides TA, et al. Effect of different protocols of caffeine intake on metabolism and endurance performance. J Appl Physiol (1985). 2002;93(3):990–9.
197.
Clark VR, Hopkins WG, Hawley JA, Burke LM. Placebo effect of carbohydrate feedings during a 40-km cycling time trial. Med Sci Sports Exerc. 2000;32(9):1642–7.
CAS PubMed Article Google Scholar
198.
Pollo A, Carlino E, Vase L, Benedetti F. Preventing motor training through nocebo suggestions. Eur J Appl Physiol. 2012;112(11):3893–903.
199.
Foad AJ, Beedie CJ, Coleman DA. Pharmacological and psychological effects of caffeine ingestion in 40-km cycling performance. Med Sci Sports Exerc. 2008;40(1):158–65.
CAS PubMed Article Google Scholar
200.
Beedie CJ, Stuart EM, Coleman DA, Foad AJ. Placebo effects of caffeine on cycling performance. Med Sci Sports Exerc. 2006;38(12):2159–64.
CAS PubMed Article Google Scholar
201.
Saunders B, de Oliveira LF, da Silva RP, de Salles PV, Goncalves LS, Yamaguchi G, et al. Placebo in sports nutrition: a proof-of-principle study involvingcaffeine supplementation. Scand J Med Sci Sports. 2017;27(11):1240–7.
CAS PubMed Article Google Scholar
202.
Beedie CJ. Placebo effects in competitive sport: qualitative data. J Sports Sci Med. 2007;6(1):21–8.
PubMed PubMed Central Google Scholar
203.
Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Front Physiol. 2017;8:240.
PubMed PubMed Central Article Google Scholar
204.
Olympic.org. Rio 2016 Cycling Road 2016.
205.
Southward K, Rutherfurd-Markwick KJ, Ali A. The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Med. 2018;48(8):1913–28.
206.
Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD. The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci. 2012;30(2):115–20.
207.
Graham-Paulson T, Perret C, Goosey-Tolfrey V. Improvements in cycling but not handcycling 10 km time trial performance in habitual caffeine users. Nutrients. 2016;8(7).
208.
Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018;50(8):1570–8.
CAS PubMed Article Google Scholar
209.
Evans M, Tierney P, Gray N, Hawe G, Macken M, Egan B. Acute ingestion of caffeinated chewing gum improves repeated sprint performance of team sport athletes with low habitual caffeine consumption. Int J Sport Nutr Exerc Metab. 2018;28(3):221–7.
CAS PubMed Article Google Scholar
210.
O'Rourke MP, O'Brien BJ, Knez WL, Paton CD. Caffeine has a small effect on 5-km running performance of well-trained and recreational runners. J Sci Med Sport. 2008;11(2):231–3.
211.
Stadheim HK, Nossum EM, Olsen R, Spencer M, Jensen J. Caffeine improves performance in double poling during acute exposure to 2,000-m altitude. J Appl Physiol (1985). 2015;119(12):1501–9.
212.
Lara B, Ruiz-Vicente D, Areces F, Abian-Vicen J, Salinero JJ, Gonzalez-Millan C, et al. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br J Nutr. 2015;114(6):908–14.
CAS PubMed Article Google Scholar
213.
Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology. 2010;211(3):245–57.
CAS PubMed PubMed Central Article Google Scholar
214.
NSCA. NSCA’s guide to test and assessment’s. Champaign: Human Kinetics; 2018.
215.
Cronin J, Lawton T, Harris N, Kilding A, McMaster DT. A brief review of handgrip strength and sport performance. J Strength Cond Res. 2017;31(11):3187–217.
216.
Bianco A, Lupo C, Alesi M, Spina S, Raccuglia M, Thomas E, et al. The sit up test to exhaustion as a test for muscular endurance evaluation. Springerplus. 2015;4:309.
PubMed PubMed Central Article Google Scholar
217.
Vanhees L, Lefevre J, Philippaerts R, Martens M, Huygens W, Troosters T, et al. How to assess physical activity? How to assess physical fitness? Eur J Cardiovasc Prev Rehabil. 2005;12(2):102–14.
218.
Polito MD, Souza DB, Casonatto J, Farinatti P. Acute effect of caffeine consumption on isotonic muscular strength and endurance: a systematic review and meta-analysis. Sci Sports. 2016;31(3):119–28.
219.
Grgic J, Mikulic P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur J Sport Sci. 2017;17(8):1029–36.
220.
Beck TW, Housh TJ, Schmidt RJ, Johnson GO, Housh DJ, Coburn JW, et al. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J Strength Cond Res. 2006;20(3):506–10.
221.
Diaz-Lara FJ, Del Coso J, Garcia JM, Portillo LJ, Areces F, Abian-Vicen J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur J Sport Sci. 2016;16(8):1079–86.
222.
Wilk M, Krzysztofik M, Filip A, Zajac A, Del Coso J. The effects of high doses of caffeine on maximal strength and muscular endurance in athletes habituated to caffeine. Nutrients. 2019;11(8).
223.
Wilk M, Krzysztofik M, Filip A, Zajac A, Del Coso J. Correction: Wilk et al. “The Effects of High Doses of Caffeine on Maximal Strength and Muscular Endurance in Athletes Habituated to Caffeine”. Nutrients. 2019;11(8):1912.
224.
Grgic J, Pickering C. The effects of caffeine ingestion on isokinetic muscular strength: a meta-analysis. J Sci Med Sport. 2019;22(3):353–60.
225.
Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15:11.
PubMed PubMed Central Article Google Scholar
226.
Lopes-Silva JP, Choo HC, Franchini E, Abbiss CR. Isolated ingestion of caffeine and sodium bicarbonate on repeated sprint performance: a systematic review and meta-analysis. J Sci Med Sport. 2019;22(8):962–72.
227.
Schneiker KT, Bishop D, Dawson B, Hackett LP. Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Med Sci Sports Exerc. 2006;38(3):578–85.
CAS PubMed Article Google Scholar
228.
Duncan MJ, Eyre E, Grgic J, Tallis J. The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. Eur J Sport Sci. 2019;10(10):1359–66.
229.
Greer F, Morales J, Coles M. Wingate performance and surface EMG frequency variables are not affected by caffeine ingestion. Appl Physiol Nutr Metab. 2006;31(5):597–603.
230.
Grgic J. Caffeine ingestion enhances Wingate performance: a meta-analysis. Eur J Sport Sci. 2018;18(2):219–25.
PubMed Article PubMed Central Google Scholar
231.
Gonçalves B, Morsales A, Sampaio-Jorge F, Tinoco F. Acute effects of caffeine intake on athletic performance: a systematic review and meta-analysis. Rev Chil Nutr. 2017;44(3):283–91.
232.
Lee CL, Cheng CF, Lin JC, Huang HW. Caffeine's effect on intermittent sprint cycling performance with different rest intervals. Eur J Appl Physiol. 2012;112(6):2107–16.
CAS PubMed Article PubMed Central Google Scholar
233.
Woolf K, Bidwell WK, Carlson AG. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int J Sport Nutr Exerc Metab. 2008;18(4):412–29.
CAS PubMed Article PubMed Central Google Scholar
234.
Zehr EP, Sale DG. Ballistic movement: muscle activation and neuromuscular adaptation. Can J Appl Physiol. 1994;19(4):363–78.
CAS PubMed Article Google Scholar
235.
Salinero JJ, Lara B, Del Coso J. Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis. Res Sports Med. 2019;27(2):238–56.
236.
Sabol F, Grgic J, Mikulic P. The Effects of 3 Different Doses of Caffeine on Jumping and Throwing Performance: A Randomized, Double-Blind, Crossover Study. Int J Sports Physiol Perform. 2019;1170-1177. https://pubmed.ncbi.nlm.nih.gov/30702372/.
237.
Haff GG, Nimphius S. Training principles for power. Strength Cond J. 2012;34(6):2–12.
238.
Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z. The influence of caffeine supplementation on resistance exercise: a review. Sports Med. 2019;49(1):17–30.
PubMed Article PubMed Central Google Scholar
239.
Pallares JG, Fernandez-Elias VE, Ortega JF, Munoz G, Munoz-Guerra J, Mora-Rodriguez R. Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc. 2013;45(11):2184–92.
CAS PubMed Article PubMed Central Google Scholar
240.
Puente C, Abian-Vicen J, Del Coso J, Lara B, Salinero JJ. The CYP1A2 -163C>A polymorphism does not alter the effects of caffeine on basketball performance. PLoS One. 2018;13(4):e0195943.
PubMed PubMed Central Article CAS Google Scholar
241.
Puente C, Abian-Vicen J, Salinero JJ, Lara B, Areces F, Del Coso J. Caffeine improves basketball performance in experienced basketball players. Nutrients. 2017;9(9).
242.
Scanlan AT, Dalbo VJ, Conte D, Stojanovic E, Stojiljkovic N, Stankovic R, et al. Caffeine supplementation has no effect on dribbling speed in elite basketball players. Int J Sports Physiol Perform. 2019;14(7):997–1000.
243.
Gant N, Ali A, Foskett A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int J Sport Nutr Exerc Metab. 2010;20(3):191–7.
CAS PubMed Article Google Scholar
244.
Foskett A, Ali A, Gant N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int J Sport Nutr Exerc Metab. 2009;19(4):410–23.
CAS PubMed Article Google Scholar
245.
Astorino TA, Matera AJ, Basinger J, Evans M, Schurman T, Marquez R. Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids. 2012;42(5):1803–8.
CAS PubMed Article Google Scholar
246.
Pettersen SA, Krustrup P, Bendiksen M, Randers MB, Brito J, Bangsbo J, et al. Caffeine supplementation does not affect match activities and fatigue resistance during match play in young football players. J Sports Sci. 2014;32(20):1958–65.
247.
Del Coso J, Perez-Lopez A, Abian-Vicen J, Salinero JJ, Lara B, Valades D. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int J Sports Physiol Perform. 2014;9(6):1013–8.
PubMed Article PubMed Central Google Scholar
248.
Perez-Lopez A, Salinero JJ, Abian-Vicen J, Valades D, Lara B, Hernandez C, et al. Caffeinated energy drinks improve volleyball performance in elite female players. Med Sci Sports Exerc. 2015;47(4):850–6.
249.
Fernandez-Campos C, Dengo AL, Moncada-Jimenez J. Acute consumption of an energy drink does not improve physical performance of female volleyball players. Int J Sport Nutr Exerc Metab. 2015;25(3):271–7.
250.
Pfeifer DR, Arvin KM, Herschberger CN, Haynes NJ, Renfrow MS. A low dose caffeine and carbohydrate supplement does not improve athletic performance during volleyball competition. Int J Exerc Sci. 2017;10(3):340–53.
PubMed PubMed Central Google Scholar
251.
Woolf K, Bidwell WK, Carlson AG. Effect of caffeine as an ergogenic aid during anaerobic exercise performance in caffeine naive collegiate football players. J Strength Cond Res. 2009;23(5):1363–9.
PubMed Article PubMed Central Google Scholar
252.
Portillo J, Del Coso J, Abian-Vicen J. Effects of caffeine ingestion on skill performance during an international female rugby sevens competition. J Strength Cond Res. 2017;31(12):3351–7.
PubMed Article PubMed Central Google Scholar
253.
Del Coso J, Portillo J, Munoz G, Abian-Vicen J, Gonzalez-Millan C, Munoz-Guerra J. Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids. 2013;44(6):1511–9.
PubMed Article CAS PubMed Central Google Scholar
254.
Ranchordas MK, Pratt H, Parsons M, Parry A, Boyd C, Lynn A. Effect of caffeinated gum on a battery of rugby-specific tests in trained university-standard male rugby union players. J Int Soc Sports Nutr. 2019;16(1):17.
CAS PubMed PubMed Central Article Google Scholar
255.
Del Coso J, Portillo J, Salinero JJ, Lara B, Abian-Vicen J, Areces F. Caffeinated energy drinks improve high-speed running in elite field hockey players. Int J Sport Nutr Exerc Metab. 2016;26(1):26–32.
PubMed Article PubMed Central Google Scholar
256.
Duncan MJ, Taylor S, Lyons M. The effect of caffeine ingestion on field hockey skill performance following physical fatigue. Res Sports Med. 2012;20(1):25–36.
PubMed Article PubMed Central Google Scholar
257.
Madden RF, Erdman KA, Shearer J, Spriet LL, Ferber R, Kolstad AT, et al. Effects of caffeine on exertion, skill performance, and physicality in ice hockey. Int J Sports Physiol Perform. 2019;1-8. https://pubmed.ncbi.nlm.nih.gov/30958066/.
258.
Felippe LC, Lopes-Silva JP, Bertuzzi R, McGinley C, Lima-Silva AE. Separate and combined effects of caffeine and sodium-bicarbonate intake on judo performance. Int J Sports Physiol Perform. 2016;11(2):221–6.
PubMed Article PubMed Central Google Scholar
259.
Stadheim HK, Kvamme B, Olsen R, Drevon CA, Ivy JL, Jensen J. Caffeine increases performance in cross-country double-poling time trial exercise. Med Sci Sports Exerc. 2013;45(11):2175–83.
CAS PubMed Article PubMed Central Google Scholar
260.
Doherty M, Smith PM. Effects of caffeine ingestion on exercise testing: a meta-analysis. Int J Sport Nutr Exerc Metab. 2004;14(6):626–46.
CAS PubMed Article PubMed Central Google Scholar
261.
Nielsen DE, El-Sohemy A. Disclosure of genetic information and change in dietary intake: a randomized controlled trial. PLoS One. 2014;9(11):e112665.
PubMed PubMed Central Article CAS Google Scholar
262.
Rahimi R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: a randomized, double-blind, placebo controlled, crossover study. Ir J Med Sci. 2019;188(1):337–45.
CAS PubMed Article PubMed Central Google Scholar
263.
Womack CJ, Saunders MJ, Bechtel MK, Bolton DJ, Martin M, Luden ND, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9(1):7.
CAS PubMed PubMed Central Article Google Scholar
264.
Hunter AM, St Clair Gibson A, Collins M, Lambert M, Noakes TD. Caffeine ingestion does not alter performance during a 100-km cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2002;12(4):438–52.
CAS PubMed Article PubMed Central Google Scholar
265.
Roelands B, Buyse L, Pauwels F, Delbeke F, Deventer K, Meeusen R. No effect of caffeine on exercise performance in high ambient temperature. Eur J Appl Physiol. 2011;111(12):3089–95.
CAS PubMed Article PubMed Central Google Scholar
266.
Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295(10):1135–41.
CAS PubMed Article PubMed Central Google Scholar
267.
Palatini P, Ceolotto G, Ragazzo F, Dorigatti F, Saladini F, Papparella I, et al. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens. 2009;27(8):1594–601.
CAS PubMed Article PubMed Central Google Scholar
268.
Soares RN, Schneider A, Valle SC, Schenkel PC. The influence of CYP1A2 genotype in the blood pressure response to caffeine ingestion is affected by physical activity status and caffeine consumption level. Vasc Pharmacol. 2018;106:67–73.
269.
Palatini P, Benetti E, Mos L, Garavelli G, Mazzer A, Cozzio S, et al. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur J Epidemiol. 2015;30(3):209–17.
CAS PubMed Article PubMed Central Google Scholar
270.
Skinner TL, Jenkins DG, Taaffe DR, Leveritt MD, Coombes JS. Coinciding exercise with peak serum caffeine does not improve cycling performance. J Sci Med Sport. 2013;16(1):54–9.
PubMed Article PubMed Central Google Scholar
271.
Jenkins NT, Trilk JL, Singhal A, O'Connor PJ, Cureton KJ. Ergogenic effects of low doses of caffeine on cycling performance. Int J Sport Nutr Exerc Metab. 2008;18(3):328–42.
CAS PubMed Article PubMed Central Google Scholar
272.
Bortolotti H, Altimari LR, Vitor-Costa M, Cyrino ES. Performance during a 20-km cycling time-trial after caffeine ingestion. J Int Soc Sports Nutr. 2014;11:45.
PubMed PubMed Central Article CAS Google Scholar
273.
Algrain Haya ATRM, Carrillo Andres E, Ryan Emily J, Chul-Ho K, Lettan Robert B II, Ryan Edward J. The effects of a polymorphism in the cytochrome P450 CYP1A2 gene on performance enhancement with caffeine in recreational cyclists. J Caffeine Res. 2016;6(1):34–9.
274.
Salinero JJ, Lara B, Ruiz-Vicente D, Areces F, Puente-Torres C, Gallo-Salazar C, et al. CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: a pilot study. Nutrients. 2017;9(3).
275.
Higgins JP, Babu KM. Caffeine reduces myocardial blood flow during exercise. Am J Med. 2013;126(8):730 e1–8.
276.
Namdar M, Schepis T, Koepfli P, Gaemperli O, Siegrist PT, Grathwohl R, et al. Caffeine impairs myocardial blood flow response to physical exercise in patients with coronary artery disease as well as in age-matched controls. PLoS One. 2009;4(5):e5665.
PubMed PubMed Central Article CAS Google Scholar
277.
Fried NT, Elliott MB, Oshinsky ML. The role of adenosine signaling in headache: a review. Brain Sci. 2017;7(3):30.
278.
Urry E, Landolt HP. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics. Curr Top Behav Neurosci. 2015;25:331–66.
PubMed Article PubMed Central Google Scholar
279.
Loy BOCP, Lindheimer J, et al. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: a pilot study. J Caffeine Res. 2015;5(2):73–81.
280.
Nunes RA, Mazzotti DR, Hirotsu C, Andersen ML, Tufik S, Bittencourt L. The association between caffeine consumption and objective sleep variables is dependent on ADORA2A c.1083T>C genotypes. Sleep Med. 2017;30:210–5.
PubMed Article PubMed Central Google Scholar
281.
Retey JV, Adam M, Khatami R, Luhmann UF, Jung HH, Berger W, et al. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep. Clin Pharmacol Ther. 2007;81(5):692–8.
CAS PubMed Article PubMed Central Google Scholar
282.
Bodenmann S, Hohoff C, Freitag C, Deckert J, Retey JV, Bachmann V, et al. Polymorphisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural performance and sleep EEG after sleep deprivation. Br J Pharmacol. 2012;165(6):1904–13.
CAS PubMed PubMed Central Article Google Scholar
283.
Byrne EM, Johnson J, McRae AF, Nyholt DR, Medland SE, Gehrman PR, et al. A genome-wide association study of caffeine-related sleep disturbance: confirmation of a role for a common variant in the adenosine receptor. Sleep. 2012;35(7):967–75.
PubMed PubMed Central Article Google Scholar
284.
Philip P, Taillard J, Moore N, Delord S, Valtat C, Sagaspe P, et al. The effects of coffee and napping on nighttime highway driving: a randomized trial. Ann Intern Med. 2006;144(11):785–91.
PubMed Article PubMed Central Google Scholar
285.
Drummond SP, Bischoff-Grethe A, Dinges DF, Ayalon L, Mednick SC, Meloy MJ. The neural basis of the psychomotor vigilance task. Sleep. 2005;28(9):1059–68.
PubMed PubMed Central Google Scholar
286.
Landolt HP, Retey JV, Tonz K, Gottselig JM, Khatami R, Buckelmuller I, et al. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology. 2004;29(10):1933–9.
CAS PubMed Article PubMed Central Google Scholar
287.
Landolt HP, Werth E, Borbely AA, Dijk DJ. Caffeine intake (200 mg) in the morning affects human sleep and EEG power spectra at night. Brain Res. 1995;675(1–2):67–74.
CAS PubMed Article PubMed Central Google Scholar
288.
Landolt HP, Dijk DJ, Gaus SE, Borbely AA. Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacology. 1995;12(3):229–38.
CAS PubMed Article PubMed Central Google Scholar
289.
Perlis ML, Smith MT, Andrews PJ, Orff H, Giles DE. Beta/gamma EEG activity in patients with primary and secondary insomnia and good sleeper controls. Sleep. 2001;24(1):110–7.
CAS PubMed Article PubMed Central Google Scholar
290.
Akesdotter C, Kentta G, Eloranta S, Franck J. The prevalence of mental health problems in elite athletes. J Sci Med Sport. 2020;23(4):329–35.
PubMed Article PubMed Central Google Scholar
291.
Childs E, Hohoff C, Deckert J, Xu K, Badner J, de Wit H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2008;33(12):2791–800.
CAS PubMed PubMed Central Article Google Scholar
292.
Alsene K, Deckert J, Sand P, de Wit H. Association between A2a receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2003;28(9):1694–702.
CAS PubMed Article PubMed Central Google Scholar
293.
Rogers PJ, Hohoff C, Heatherley SV, Mullings EL, Maxfield PJ, Evershed RP, et al. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology. 2010;35(9):1973–83.
CAS PubMed PubMed Central Article Google Scholar
294.
Chang C, Putukian M, Aerni G, Diamond A, Hong G, Ingram Y, et al. Mental health issues and psychological factors in athletes: detection, management, effect on performance and prevention: American medical society for sports medicine position statement-executive summary. Br J Sports Med. 2020;54(4):216–20.
PubMed Article PubMed Central Google Scholar
295.
Desbrow BHM, Scheelings P. An examination of consumer exposure to caffeine from commercial coffee and coffee-flavoured milk. J Food Compos Anal. 2012;28(2):114–8.
296.
Desbrow B, Hall S, O’Connor H, Slater G, Barnes K, Grant G. Caffeine content of pre-workout supplements commonly used by Australian consumers. Drug Test Anal. 2019;11(3):523–9.
297.
Rothwell JA, Fillatre Y, Martin JF, Lyan B, Pujos-Guillot E, Fezeu L, et al. New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects. PLoS One. 2014;9(4):e93474.
PubMed PubMed Central Article CAS Google Scholar
298.
James JE. Caffeine and cognitive performance: persistent methodological challenges in caffeine research. Pharmacol Biochem Behav. 2014;124:117–22.
CAS PubMed Article Google Scholar
299.
Kendler KS, Prescott CA. Caffeine intake, tolerance, and withdrawal in women: a population-based twin study. Am J Psychiatry. 1999;156(2):223–8.
300.
Irwin C, Desbrow B, Ellis A, O'Keeffe B, Grant G, Leveritt M. Caffeine withdrawal and high-intensity endurance cycling performance. J Sports Sci. 2011;29(5):509–15.
301.
Van Soeren MH, Sathasivam P, Spriet LL, Graham TE. Caffeine metabolism and epinephrine responses during exercise in users and nonusers. J Appl Physiol (1985). 1993;75(2):805–12.
302.
Cornelis MC, Monda KL, Yu K, Paynter N, Azzato EM, Bennett SN, et al. Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet. 2011;7(4):e1002033.
CAS PubMed PubMed Central Article Google Scholar
303.
Coffee, Caffeine Genetics C, Cornelis MC, Byrne EM, Esko T, Nalls MA, et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry. 2015;20(5):647–56.
304.
Josse AR, Da Costa LA, Campos H, El-Sohemy A. Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption. Am J Clin Nutr. 2012;96(3):665–71.
305.
Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am J Clin Nutr. 2007;86(1):240–4.
CAS PubMed Article Google Scholar
306.
Fredholm BB. Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiol Scand. 1982;115(2):283–6.
CAS PubMed Article Google Scholar
307.
Johansson B, Georgiev V, Lindstrom K, Fredholm BB. A1 and A2A adenosine receptors and A1 mRNA in mouse brain: effect of long-term caffeine treatment. Brain Res. 1997;762(1–2):153–64.
CAS PubMed Article Google Scholar
308.
Nikodijevic O, Jacobson KA, Daly JW. Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacol Biochem Behav. 1993;44(1):199–216.
CAS PubMed PubMed Central Article Google Scholar
309.
Bangsbo J, Jacobsen K, Nordberg N, Christensen NJ, Graham T. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol (1985). 1992;72(4):1297–303.
310.
Beaumont R, Cordery P, Funnell M, Mears S, James L, Watson P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J Sports Sci. 2017;35(19):1920–7.
311.
Lara B, Ruiz-Moreno C, Salinero JJ, Del Coso J. Time course of tolerance to the performance benefits of caffeine. PLoS One. 2019;14(1):e0210275.
CAS PubMed PubMed Central Article Google Scholar
312.
Goncalves LS, Painelli VS, Yamaguchi G, Oliveira LF, Saunders B, da Silva RP, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol (1985). 2017;123(1):213–20.
313.
Areta JL, Irwin C, Desbrow B. Inaccuracies in caffeine intake quantification and other important limitations in recent publication by Goncalves et al. J Appl Physiol (1985). 2017;123(5):1414.
314.
Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785–807.
CAS PubMed Article Google Scholar
315.
Porterfield SLJ, Laubach L, Daprano C. Comparison of the effect of caffeine ingestion on time to exhaustion between endurance trained and untrained men. J Exerc Physiol Online. 2013;16:90–8.
316.
Brooks JHWK, Chrismas BCR. Acute effects of caffeine on strength performance in trained and untrained individuals. J Athl Enhanc. 2015;4.
317.
Boyett JC, Giersch GE, Womack CJ, Saunders MJ, Hughey CA, Daley HM, et al. Time of day and training status both impact the efficacy of caffeine for short duration cycling performance. Nutrients. 2016;8(10).
318.
Collomp K, Ahmaidi S, Chatard JC, Audran M, Prefaut C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol Occup Physiol. 1992;64(4):377–80.
CAS PubMed Article Google Scholar
319.
Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):1319–34.
CAS PubMed Article Google Scholar
320.
Mizuno M, Kimura Y, Tokizawa K, Ishii K, Oda K, Sasaki T, et al. Greater adenosine A(2A) receptor densities in cardiac and skeletal muscle in endurance-trained men: a [11C] TMSX PET study. Nucl Med Biol. 2005;32(8):831–6.
CAS PubMed Article Google Scholar
321.
Clark I, Landolt HP. Coffee, caffeine, and sleep: a systematic review of epidemiological studies and randomized controlled trials. Sleep Med Rev. 2017;31:70–8.
322.
Robson-Ansley PJ, Gleeson M, Ansley L. Fatigue management in the preparation of Olympic athletes. J Sports Sci. 2009;27(13):1409–20.
323.
Halson SL, Juliff LE. Sleep, sport, and the brain. Prog Brain Res. 2017;234:13–31.
324.
Leeder J, Glaister M, Pizzoferro K, Dawson J, Pedlar C. Sleep duration and quality in elite athletes measured using wristwatch actigraphy. J Sports Sci. 2012;30(6):541–5.
325.
Halson SL. Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Med. 2014;44(Suppl 1):S13–23.
326.
Ramos-Campo DJ, Perez A, Avila-Gandia V, Perez-Pinero S, Rubio-Arias JA. Impact of caffeine intake on 800-m running performance and sleep quality in trained runners. Nutrients. 2019;11(9).
327.
Dunican IC, Higgins CC, Jones MJ, Clarke MW, Murray K, Dawson B, et al. Caffeine use in a super rugby game and its relationship to post-game sleep. Eur J Sport Sci. 2018;18(4):513–23.
328.
Nedelec M, Halson S, Abaidia AE, Ahmaidi S, Dupont G. Stress, sleep and recovery in elite soccer: a critical review of the literature. Sports Med. 2015;45(10):1387–400.
329.
McLellan TM, Kamimori GH, Voss DM, Bell DG, Cole KG, Johnson D. Caffeine maintains vigilance and improves run times during night operations for special forces. Aviat Space Environ Med. 2005;76(7):647–54.
330.
McLellan TM, Kamimori GH, Bell DG, Smith IF, Johnson D, Belenky G. Caffeine maintains vigilance and marksmanship in simulated urban operations with sleep deprivation. Aviat Space Environ Med. 2005;76(1):39–45.
331.
Bchir F, Dogui M, Ben Fradj R, Arnaud MJ, Saguem S. Differences in pharmacokinetic and electroencephalographic responses to caffeine in sleep-sensitive and non-sensitive subjects. C R Biol. 2006;329(7):512–9.
CAS PubMed Article Google Scholar
332.
Kamimori GH, McLellan TM, Tate CM, Voss DM, Niro P, Lieberman HR. Caffeine improves reaction time, vigilance and logical reasoning during extended periods with restricted opportunities for sleep. Psychopharmacology. 2015;232(12):2031–42.
CAS PubMed Article Google Scholar
333.
Mora-Rodriguez R, Pallares JG, Lopez-Gullon JM, Lopez-Samanes A, Fernandez-Elias VE, Ortega JF. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J Sci Med Sport. 2015;18(3):338–42.
334.
McLellan TM, Kamimori GH, Voss DM, Tate C, Smith SJ. Caffeine effects on physical and cognitive performance during sustained operations. Aviat Space Environ Med. 2007;78(9):871–7.
335.
Tikuisis P, Keefe AA, McLellan TM, Kamimori G. Caffeine restores engagement speed but not shooting precision following 22 h of active wakefulness. Aviat Space Environ Med. 2004;75(9):771–6.
336.
Share B, Sanders N, Kemp J. Caffeine and performance in clay target shooting. J Sports Sci. 2009;27(6):661–6.
337.
Pomportes L, Brisswalter J, Hays A, Davranche K. Effects of Carbohydrate, Caffeine, and Guarana on Cognitive Performance, Perceived Exertion, and Shooting Performance in High-Level Athletes. Int J Sports Physiol Perform. 2019;14(5):576–82.
338.
Duncan MJ, Dobell AP, Caygill CL, Eyre E, Tallis J. The effect of acute caffeine ingestion on upper body anaerobic exercise and cognitive performance. Eur J Sport Sci. 2019;19(1):103–11.
339.
Gillingham RL, Keefe AA, Tikuisis P. Acute caffeine intake before and after fatiguing exercise improves target shooting engagement time. Aviat Space Environ Med. 2004;75(10):865–71.
340.
Zhang Y, Balilionis G, Casaru C, Geary C, Schumacker RE, Neggers YH, et al. Effects of caffeine and menthol on cognition and mood during simulated firefighting in the heat. Appl Ergon. 2014;45(3):510–4.
341.
Crowe MJ, Leicht AS, Spinks WL. Physiological and cognitive responses to caffeine during repeated, high-intensity exercise. Int J Sport Nutr Exerc Metab. 2006;16(5):528–44.
CAS PubMed Article Google Scholar
342.
Stuart GR, Hopkins WG, Cook C, Cairns SP. Multiple effects of caffeine on simulated high-intensity team-sport performance. Med Sci Sports Exerc. 2005;37(11):1998–2005.
CAS PubMed Article Google Scholar
343.
Duvnjak-Zaknich DM, Dawson BT, Wallman KE, Henry G. Effect of caffeine on reactive agility time when fresh and fatigued. Med Sci Sports Exerc. 2011;43(8):1523–30.
CAS PubMed Article Google Scholar
344.
McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312.
CAS PubMed Article Google Scholar
345.
Antonio JKM, Horn C, Jiannine L, Carson C, Ellerbroek A, Roberts J, Peacock C, Tartar J. The effects of an energy drink on psychomotor vigilance in trained individuals. J Funct Morphol Kinesiol. 2019;4(47).
346.
Crawford C, Teo L, Lafferty L, Drake A, Bingham JJ, Gallon MD, et al. Caffeine to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field. Nutr Rev. 2017;75(suppl_2):17–35.
347.
McLellan TM, Bell DG, Kamimori GH. Caffeine improves physical performance during 24 h of active wakefulness. Aviat Space Environ Med. 2004;75(8):666–72.
348.
Chia JS, Barrett LA, Chow JY, Burns SF. Effects of caffeine supplementation on performance in ball games. Sports Med. 2017;47(12):2453–71.
349.
Pontifex KJ, Wallman KE, Dawson BT, Goodman C. Effects of caffeine on repeated sprint ability, reactive agility time, sleep and next day performance. J Sports Med Phys Fitness. 2010;50(4):455–64.
350.
Bowtell JL, Mohr M, Fulford J, Jackman SR, Ermidis G, Krustrup P, et al. Improved exercise tolerance with caffeine is associated with modulation of both peripheral and central neural processes in human participants. Front Nutr. 2018;5:6.
PubMed PubMed Central Article CAS Google Scholar
351.
Cohn J, Paule MG. Repeated acquisition of response sequences: the analysis of behavior in transition. Neurosci Biobehav Rev. 1995;19(3):397–406.
CAS PubMed Article PubMed Central Google Scholar
352.
Saville CWN, de Morree HM, Dundon NM, Marcora SM, Klein C. Effects of caffeine on reaction time are mediated by attentional rather than motorprocesses. Psychopharmacology. 2018;235(3):749–59.
CAS PubMed Article PubMed Central Google Scholar
353.
Connell CJ, Thompson B, Kuhn G, Gant N. Exercise-induced fatigue and caffeine supplementation affect psychomotor performance but not covert visuo-spatial attention. PLoS One. 2016;11(10):e0165318.
PubMed PubMed Central Article CAS Google Scholar
354.
Concerto C, Infortuna C, Chusid E, Coira D, Babayev J, Metwaly R, et al. Caffeinated energy drink intake modulates motor circuits at rest, before and after a movement. Physiol Behav. 2017;179:361–8.
CAS PubMed Article PubMed Central Google Scholar
355.
Gonzalez-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586(1):45–53.
CAS PubMed Article PubMed Central Google Scholar
356.
Cheung SS, Sleivert GG. Multiple triggers for hyperthermic fatigue and exhaustion. Exerc Sport Sci Rev. 2004;32(3):100–6.
PubMed Article PubMed Central Google Scholar
357.
Nichols AW. Heat-related illness in sports and exercise. Curr Rev Musculoskelet Med. 2014;7(4):355–65.
PubMed PubMed Central Article Google Scholar
358.
Ely BR, Ely MR, Cheuvront SN. Marginal effects of a large caffeine dose on heat balance during exercise-heat stress. Int J Sport Nutr Exerc Metab. 2011;21(1):65–70.
CAS PubMed Article PubMed Central Google Scholar
359.
Suvi S, Timpmann S, Tamm M, Aedma M, Kreegipuu K, Oopik V. Effects of caffeine on endurance capacity and psychological state in young females and males exercising in the heat. Appl Physiol Nutr Metab. 2017;42(1):68–76.
CAS PubMed Article PubMed Central Google Scholar
360.
Maughan RJ, Griffin J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet. 2003;16(6):411–20.
CAS PubMed Article PubMed Central Google Scholar
361.
Zhang Y, Coca A, Casa DJ, Antonio J, Green JM, Bishop PA. Caffeine and diuresis during rest and exercise: a meta-analysis. J Sci Med Sport. 2015;18(5):569–74.
PubMed Article PubMed Central Google Scholar
362.
Cohen BS, Nelson AG, Prevost MC, Thompson GD, Marx BD, Morris GS. Effects of caffeine ingestion on endurance racing in heat and humidity. Eur J Appl Physiol Occup Physiol. 1996;73(3–4):358–63.
CAS PubMed Article Google Scholar
363.
Del Coso J, Estevez E, Mora-Rodriguez R. Caffeine effects on short-term performance during prolonged exercise in the heat. Med Sci Sports Exerc. 2008;40(4):744.
PubMed Article CAS Google Scholar
364.
Cheuvront SN, Ely BR, Kenefick RW, Michniak-Kohn BB, Rood JC, Sawka MN. No effect of nutritional adenosine receptor antagonists on exercise performance in the heat. Am J Phys Regul Integr Comp Phys. 2009;296(2):R394–401.
365.
Ganio MS, Johnson EC, Lopez RM, Stearns RL, Emmanuel H, Anderson JM, et al. Caffeine lowers muscle pain during exercise in hot but not cool environments. Physiol Behav. 2011;102(3–4):429–35.
CAS PubMed Article Google Scholar
366.
Pitchford NW, Fell JW, Leveritt MD, Desbrow B, Shing CM. Effect of caffeine on cycling time-trial performance in the heat. J Sci Med Sport. 2014;17(4):445–9.
367.
Beaumont RE, James LJ. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat. J Sci Med Sport. 2017;20(11):1024–8.
368.
Graham TE. Caffeine, coffee and ephedrine: impact on exercise performance and metabolism. Can J Appl Physiol. 2001;26(Suppl):S103–19.
CAS PubMed PubMed Central Google Scholar
369.
Doherty M, Smith P, Hughes M, Davison R. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sports Sci. 2004;22(7):637–43.
370.
Berglund B, Hemmingsson P. Effects of caffeine ingestion on exercise performance at low and high altitudes in cross-country skiers. Int J Sports Med. 1982;3(4):234–6.
CAS PubMed Article PubMed Central Google Scholar
371.
Fulco CS, Rock PB, Trad LA, Rose MS, Forte VA Jr, Young PM, et al. Effect of caffeine on submaximal exercise performance at altitude. Aviat Space Environ Med. 1994;65(6):539–45.
CAS PubMed PubMed Central Google Scholar
372.
Smirmaul BP, de Moraes AC, Angius L, Marcora SM. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. Eur J Appl Physiol. 2017;117(1):27–38.
CAS PubMed Article PubMed Central Google Scholar
373.
Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39(10):813–32.
CAS PubMed Article PubMed Central Google Scholar
374.
Teekachunhatean S, Tosri N, Rojanasthien N, Srichairatanakool S, Sangdee C. Pharmacokinetics of caffeine following a single administration of coffee enema versus oral coffee consumption in healthy male subjects. ISRN Pharmacol. 2013;2013:147238.
PubMed PubMed Central Article Google Scholar
375.
Magkos F, Kavouras SA. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr. 2005;45(7–8):535–62.
CAS PubMed Article PubMed Central Google Scholar
376.
Birkett DJ, Miners JO. Caffeine renal clearance and urine caffeine concentrations during steady state dosing. Implications for monitoring caffeine intake during sports events. Br J Clin Pharmacol. 1991;31(4):405–8.
CAS PubMed PubMed Central Article Google Scholar
377.
Collomp K, Anselme F, Audran M, Gay JP, Chanal JL, Prefaut C. Effects of moderate exercise on the pharmacokinetics of caffeine. Eur J Clin Pharmacol. 1991;40(3):279–82.
CAS PubMed Article PubMed Central Google Scholar
378.
Hoffman JR, Kang J, Ratamess NA, Jennings PF, Mangine GT, Faigenbaum AD. Effect of nutritionally enriched coffee consumption on aerobic and anaerobic exercise performance. J Strength Cond Res. 2007;21(2):456–9.
PubMed PubMed Central Google Scholar
379.
Glaister M, Williams BH, Muniz-Pumares D, Balsalobre-Fernandez C, Foley P. The effects of caffeine supplementation on physiological responses to submaximal exercise in endurance-trained men. PLoS One. 2016;11(8):e0161375.
PubMed PubMed Central Article CAS Google Scholar
380.
Cheng CF, Hsu WC, Kuo YH, Shih MT, Lee CL. Caffeine ingestion improves power output decrement during 3-min all-out exercise. Eur J Appl Physiol. 2016;116(9):1693–702.
CAS PubMed Article PubMed Central Google Scholar
381.
Syed SA, Kamimori GH, Kelly W, Eddington ND. Multiple dose pharmacokinetics of caffeine administered in chewing gum to normal healthy volunteers. Biopharm Drug Dispos. 2005;26(9):403–9.
CAS PubMed Article PubMed Central Google Scholar
382.
Sadek P, Pan X, Shepherd P, Malandain E, Carney J, Coleman H. A randomized, two-way crossover study to evaluate the pharmacokinetics of caffeine delivered using caffeinated chewing gum versus a marketed caffeinated beverage in healthy adult volunteers. J Caffeine Res. 2017;7(4):125–32.
CAS PubMed PubMed Central Article Google Scholar
383.
Perko MJ, Nielsen HB, Skak C, Clemmesen JO, Schroeder TV, Secher NH. Mesenteric, coeliac and splanchnic blood flow in humans during exercise. J Physiol. 1998;513(Pt 3):907–13.
CAS PubMed PubMed Central Article Google Scholar
384.
Bellar D, Kamimori GH, Glickman EL. The effects of low-dose caffeine on perceived pain during a grip to exhaustion task. J Strength Cond Res. 2011;25(5):1225–8.
PubMed Article PubMed Central Google Scholar
385.
Poole RL, Tordoff MG. The taste of caffeine. J Caffeine Res. 2017;7(2):39–52.
PubMed PubMed Central Article Google Scholar
386.
Sugita M, Yamamoto K, Hirono C, Shiba Y. Information processing in brainstem bitter taste-relaying neurons defined by genetic tracing. Neuroscience. 2013;250:166–80.
CAS PubMed Article PubMed Central Google Scholar
387.
Matsumoto I. Gustatory neural pathways revealed by genetic tracing from taste receptor cells. Biosci Biotechnol Biochem. 2013;77(7):1359–62.
CAS PubMed PubMed Central Article Google Scholar
388.
Wilson PB. Dietary and non-dietary correlates of gastrointestinal distress during the cycle and run of a triathlon. Eur J Sport Sci. 2016;16(4):448–54.
PubMed Article PubMed Central Google Scholar
389.
Boekema PJ, Samsom M, van Berge Henegouwen GP, Smout AJ. Coffee and gastrointestinal function: facts and fiction. A review. Scand J Gastroenterol Suppl. 1999;230:35–9.
CAS PubMed PubMed Central Google Scholar
390.
Sinclair J, Bottoms L. The effects of carbohydrate and caffeine mouth rinsing on arm crank time-trial performance. J Sports Res. 2014;14(3):259–64.
391.
Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci U S A. 2003;100(15):8981–6.
CAS PubMed PubMed Central Article Google Scholar
392.
Phukan K, Nandy M, Sharma RB, Sharma HK. Nanosized drug delivery systems for direct nose to brain targeting: a review. Recent Pat Drug Deliv Formul. 2016;10(2):156–64.
CAS PubMed Article PubMed Central Google Scholar
393.
Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013;10(7):957–72.
CAS PubMed Article PubMed Central Google Scholar
394.
Doherty M, Smith PM, Davison RC, Hughes MG. Caffeine is ergogenic after supplementation of oral creatine monohydrate. Med Sci Sports Exerc. 2002;34(11):1785–92.
CAS PubMed Article PubMed Central Google Scholar
395.
Lee CL, Lin JC, Cheng CF. Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance. Eur J Appl Physiol. 2011;111(8):1669–77.
CAS PubMed Article PubMed Central Google Scholar
396.
Vandenberghe K, Gillis N, Van Leemputte M, Van Hecke P, Vanstapel F, Hespel P. Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol. 1996;80(2):452–7.
CAS PubMed Article PubMed Central Google Scholar
397.
Clarkson PM. Nutrition for improved sports performance. Current issues on ergogenic aids. Sports Med. 1996;21(6):393–401.
CAS PubMed Article PubMed Central Google Scholar
398.
Hespel P, Op't Eijnde B, Van Leemputte M. Opposite actions of caffeine and creatine on muscle relaxation time in humans. J Appl Physiol. 2002;92(2):513–8.
CAS PubMed Article PubMed Central Google Scholar
399.
Greenhaff PL, Bodin K, Soderlund K, Hultman E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Phys. 1994;266(5 Pt 1):E725–30.
400.
Spradley BD, Crowley KR, Tai CY, Kendall KL, Fukuda DH, Esposito EN, et al. Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutr Metab. 2012;9:28.
401.
Joy JM, Lowery RP, Falcone PH, Vogel RM, Mosman MM, Tai CY, et al. A multi-ingredient, pre-workout supplement is apparently safe in healthy males and females. Food Nutr Res. 2015;59:27470.
402.
Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:18.
PubMed PubMed Central Article CAS Google Scholar
403.
Kovacs EM, Stegen J, Brouns F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol. 1998;85(2):709–15.
CAS PubMed Article Google Scholar
404.
van Nieuwenhoven MA, Brouns F, Kovacs EM. The effect of two sports drinks and water on GI complaints and performance during an 18-km run. Int J Sports Med. 2005;26(4):281–5.
405.
Sasaki H, Maeda J, Usui S, Ishiko T. Effect of sucrose and caffeine ingestion on performance of prolonged strenuous running. Int J Sports Med. 1987;8(4):261–5.
CAS PubMed Article Google Scholar
406.
Conger SA, Warren GL, Hardy MA, Millard-Stafford ML. Does caffeine added to carbohydrate provide additional ergogenic benefit for endurance? Int J Sport Nutr Exerc Metab. 2011;21(1):71–84.
CAS PubMed Article Google Scholar
407.
Clarke JS, Highton J, Close GL, Twist C. Carbohydrate and caffeine improves high intensity running of elite rugby league interchange players duringsimulated match play. J Strength Cond Res. 2019;33(5):1320–7.
408.
Stevenson EJ, Hayes PR, Allison SJ. The effect of a carbohydrate-caffeine sports drink on simulated golf performance. Appl Physiol Nutr Metab. 2009;34(4):681–8.
CAS PubMed Article Google Scholar
409.
Roberts SP, Stokes KA, Trewartha G, Doyle J, Hogben P, Thompson D. Effects of carbohydrate and caffeine ingestion on performance during a rugby union simulation protocol. J Sports Sci. 2010;28(8):833–42.
410.
Lee CL, Cheng CF, Astorino TA, Lee CJ, Huang HW, Chang WD. Effects of carbohydrate combined with caffeine on repeated sprint cycling and agility performance in female athletes. J Int Soc Sports Nutr. 2014;11:17.
PubMed PubMed Central Article CAS Google Scholar
411.
Clarke ND, Duncan MJ. Effect of carbohydrate and caffeine ingestion on badminton performance. Int J Sports Physiol Perform. 2016;11(1):108–15.
412.
Acker-Hewitt TL, Shafer BM, Saunders MJ, Goh Q, Luden ND. Independent and combined effects of carbohydrate and caffeine ingestion on aerobic cycling performance in the fed state. Appl Physiol Nutr Metab. 2012;37(2):276–83.
CAS PubMed Article Google Scholar
413.
Pedersen DJ, Lessard SJ, Coffey VG, Churchley EG, Wootton AM, Ng T, et al. High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. J Appl Physiol. 2008;105(1):7–13.
CAS PubMed Article Google Scholar
414.
Beelen M, Kranenburg J, Senden JM, Kuipers H, Loon LJ. Impact of caffeine and protein on postexercise muscle glycogen synthesis. Med Sci Sports Exerc. 2012;44(4):692–700.
CAS PubMed Article Google Scholar
415.
Taylor C, Higham D, Close GL, Morton JP. The effect of adding caffeine to postexercise carbohydrate feeding on subsequent high-intensity interval-running capacity compared with carbohydrate alone. Int J Sport Nutr Exerc Metab. 2011;21(5):410–6.
CAS PubMed Article Google Scholar
416.
Nieman DC, Goodman CL, Capps CR, Shue ZL, Arnot R. Influence of 2-weeks ingestion of high chlorogenic acid coffee on mood state, performance, and postexercise inflammation and oxidative stress: a randomized, placebo-controlled trial. Int J Sport Nutr Exerc Metab. 2018;28(1):55–65.
CAS PubMed Article Google Scholar
417.
Desbrow B, Hughes R, Leveritt M, Scheelings P. An examination of consumer exposure to caffeine from retail coffee outlets. Food Chem Toxicol. 2007;45(9):1588–92.
CAS PubMed Article Google Scholar
418.
Souza DB, Del Coso J, Casonatto J, Polito MD. Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. Eur J Nutr. 2017;56(1):13–27.
CAS PubMed Article Google Scholar
419.
Campbell B, Wilborn C, La Bounty P, Taylor L, Nelson MT, Greenwood M, et al. International Society of Sports Nutrition position stand: energy drinks. J Int Soc Sports Nutr. 2013;10(1):1.
PubMed PubMed Central Article Google Scholar
420.
Quinlivan A, Irwin C, Grant GD, Anoopkumar-Dukie S, Skinner T, Leveritt M, et al. The effects of red Bull energy drink compared with caffeine on cycling time-trial performance. Int J Sports Physiol Perform. 2015;10(7):897–901.